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Abstract

A new practical application of neural network (NN) techniques to environmental numerical modeling has been developed. Namely, a new type

of numerical model, a complex hybrid environmental model based on a synergetic combination of deterministic and machine learning model

components, has been introduced. Conceptual and practical possibilities of developing hybrid models are discussed in this paper for applications

to climate modeling and weather prediction. The approach presented here uses NN as a statistical or machine learning technique to develop highly

accurate and fast emulations for time consuming model physics components (model physics parameterizations). The NN emulations of the most

time consuming model physics components, short and long wave radiation parameterizations or full model radiation, presented in this paper are

combined with the remaining deterministic components (like model dynamics) of the original complex environmental model—a general

circulation model or global climate model (GCM)—to constitute a hybrid GCM (HGCM). The parallel GCM and HGCM simulations produce

very similar results but HGCM is significantly faster. The speed-up of model calculations opens the opportunity for model improvement.

Examples of developed HGCMs illustrate the feasibility and efficiency of the new approach for modeling complex multidimensional

interdisciplinary systems.
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1. Introduction

The scientific and practical significance of interdisciplinary

complex environmental numerical models increased tremen-

dously during the last decades, due to improvements in their

quality via developments in numerical modeling and comput-

ing capabilities. Traditional complex environmental numerical

models are deterministic models based on ‘first principles’

equations. For example, general circulation models a.k.a.

global climate models (GCM), numerical atmospheric and

oceanic models for climate and weather predictions, are based

on solving time-dependent 3D geophysical fluid dynamics

equations on the sphere. The governing equations of these

models can be written symbolically as,

vj

vt
CDðj; xÞZPðj; xÞ (1)
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where j is a 3D prognostic or dependent variable (e.g.

temperature, wind, pressure, moisture); x is a 3D independent

variable (e.g. latitude, longitude, and height); D is model

dynamics (the set of spectral or gridpoint 3D partial differential

equations of motion, thermodynamics, continuity etc. approxi-

mated with a spectral or grid-point numerical scheme); and P is

model physics (e.g. long and short wave atmospheric radiation,

turbulence, convection and large scale precipitation processes,

clouds, interactions with land and ocean processes, etc.) and

chemistry (constituency transport, chemical reactions, etc.).

These environmental models are either fully coupled atmos-

phere–ocean–land–chemistry–biosphere models or partially

coupled models (e.g. with the chemistry component, calculated

off-line, driven by the flow simulated by an atmosphere-ocean-

land model).

Physical and other processes are so complicated that it is

practical to include them into GCMs only as 1D (in the vertical

direction) simplified or parameterized versions (usually called

parameterizations). These parameterizations constitute the

right-hand side forcing for the dynamics equation (1). Still,

some of these parameterizations are the most time consuming

components of GCMs. They are formulated using relevant first

principles and observational data, and are usually based on

solving deterministic equations (like radiation equations) and
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some secondary empirical components based on traditional

statistical techniques like regression. Thus, for the widely used

state-of-the-art GCMs all major model components are

predominantly deterministic; namely, not only model

dynamics but also model physics and chemistry are based on

solving deterministic first principles physical or chemical

equations.

Only recently attempts have been made to introduce major

statistical components into GCMs, like an attempt to apply a

traditional statistical technique as the expansion of hierarchical

correlated functions to approximate atmospheric chemistry

components (Schoendorf Rabitz & Li, 2003). This traditional

statistical technique was applied successfully but with limited

accuracy. Significantly higher accuracy requirements must be

met for such complex multidimensional and interdisciplinary

systems as modern GCMs. A particular type of machine

learning technique (MLT), namely neural networks (NN), has

been successfully applied for the development of new and for

emulation of existing atmospheric and ocean physics para-

meterizations (Chevallier, Chéruy, Scott, & Chédin, 1998;

Chevallier, Morcrette, Chéruy, & Scott, 2000; Krasnopolsky,

Chalikov, & Rao, 2000; Krasnopolsky, Chalikov, & Tolman,

2002; Krasnopolsky, Fox-Rabinovitz & Chalikov, 2005;

Krasnopolsky, Fox-Rabinovitz, & Chou, 2005; Tolman,

Krasnopolsky, & Chalikov, 2005).

In this paper, we introduce hybrid numerical models which

are based on a synergetic combination of deterministic

numerical modeling with MLTs for emulating model physics.

On the basis of the aforementioned preliminary studies and our

current work with atmospheric and ocean physics, we

formulate and investigate a new approach to this synergetic

integration of deterministic and machine learning components

in complex hybrid environmental numerical models. We

discuss the conceptual and practical possibilities of developing

hybrid GCM (HGCM); namely, the possibility of combining

accurate and fast MLT/NN emulations of model physics

components with the deterministic model dynamics of GCMs,

which are the types of complex environmental models used for

modern atmospheric and ocean climate modeling and weather

prediction.

In Section 2 we formulate our approach to developing

HGCMs using accurate and fast emulations based on MLT/NN,

which allows us to significantly speed up the model calculations

what is beneficial for development of high-quality high-

resolution environmental numerical models. In Section 3 we

present examples of HGCMs. In Section 4 we discuss the NN

technique used in HGCM applications. Discussion and future

plans are presented in Section 5. Section 6 contains conclusions.

2. Concept of hybrid models

One of the main problems in the development and

implementation of modern high-quality high-resolution

environmental models is the complexity of physical, chemical,

and other processes involved. Here, we will discuss MLT

emulations for model physics, keeping in mind that the

approach is applicable to other model components (chemical,
hydrological and other processes) as well. Parameterizations

of model physics are approximate schemes, adjusted to model

resolution and computer resources, based on simplified

physical process equations and empirical data and relation-

ships. Still, the parameterizations are so time-consuming, even

for most powerful modern supercomputers, that some of them

have to be calculated less frequently than model dynamics.

Also, different physical parameterizations are calculated with

different frequencies inversely proportional to their compu-

tational complexity. This may negatively affect the accuracy of

environmental simulations and predictions. For example, in the

case of a complex climate model like GCM, calculation of a

model physics package (including the atmospheric and land

physics) in a typical moderate resolution (a few degrees) GCM

like the National Center for Atmospheric Research (NCAR)

community atmospheric model (CAM) takes about 70% of the

total model computations. This is despite the fact that while the

model dynamics is calculated every 20 min, some computa-

tionally expensive parts of the model physics (e.g. short wave

radiation) are calculated every hour. The most time consuming

calculation of the model atmospheric physics, full long wave

radiation (including calculation of optical properties), is done

only every 12 h. More frequent model physics calculations,

desirable for temporal consistency with model dynamics, and

the introduction of more sophisticated model physics para-

meterizations in the future, will result in a further increase in

the computational time spent for calculating model physics.

This situation is an important motivation for looking for

alternative, faster (and most importantly) very accurate ways of

calculating model physics, chemistry, hydrology and other

processes. During the last decade, a new machine learning

approach based on NN approximations or emulations was

applied for accurate and fast calculation of atmospheric

radiative processes (e.g. Chevallier, Chéruy, Scott, & Chédin,

1998; Krasnopolsky, Breaker, & Gemmill, 1997), and for

environmental satellite data processing (Krasnopolsky,

Breaker, & Gemmill, 1995; Krasnopolsky, Gemmill, &

Breaker, 1999; Krasnopolsky & Schiller 2003). Recently, the

NN approach has also used by the authors for emulations of

model physics in ocean and atmospheric numerical models

(Krasnopolsky et al., 2000, 2002, 2005) in which an

acceleration in the calculation of model physics components

of 10–105 times have been achieved as compared to the time

needed for calculating the corresponding original parameter-

izations of model physics.

Based on the above results we introduce a new concept or

design of a hybrid complex environmental model. We use

NCAR CAM (see J. Climate, 1998 for the description of the

model), a state-of-the-art widely recognized GCM used by a

large modeling community for climate predictions, as an

example of a complex environmental model. We start from the

definitions of terms used for formulating our approach.

A NN emulation of a model physics parameterization is a

functional imitation of this parameterization so that the results

of model calculations with the original parameterization and

with its NN emulation are physically (and climatologically)

practically identical. The high quality of NN emulations
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achieved is due to the high accuracy of approximation of the

original parameterization.

Due to the capability of modern MLTs in providing a very

high accuracy of approximating complex systems like model

physics, our NN emulations of model physics parameteriza-

tions are practically identical to the original physical

parameterizations. It allows us to preserve the integrity and

level of complexity of the state-of-the-art parameterizations of

model physics. As a result, a HGCM using these NN

emulations produces climate simulations that are practically

identical to those of the original GCM. This is achieved by

using data for NN training that are simulated by running an

original GCM, i.e. with the original parameterization. Using

model-simulated data for NN training allows us to achieve a

high accuracy of approximation because simulated data are

free of the problems typical for empirical data (problems like

high level of observational noise, a sparse spatial and temporal

coverage, a poor representation of extreme events, etc.). In the

context of our approach, the accuracy and improved

computational performance of NN emulations and eventually

the HGCM, is always measured against the original GCM and

its original parameterization. It is noteworthy that the

developed NN emulation has the same inputs and outputs as

the original parameterization and is used precisely as its

functional substitute within the model.

NN emulations of model physics are based on the fact that

any parameterization of model physics can be considered as a

continuous or almost continuous (i.e. with a finite number of

finite discontinuities like step functions) mapping (output

vector vs. input vector dependence), and NNs (multilayer

perceptrons (MLP) in our case) are a generic tool to

approximate such mappings (Cybenko, 1989; Funahashi,

1989; Hornik, 1991). In this study, we used a MLP with one

hidden layer and with the hyperbolic tangent activation

function and a linear output layer presented by Eq. (2)

yq Z aq0 C
Xk

jZ1

aqj tanh bj0 C
Xn

iZ1

bji,xi

 !
;

q Z 1; 2;.;m

(2)

where xi and yq are components of the input and output vectors,

respectively; a and b are weights and biases, n and m are the

numbers of inputs and outputs, respectively; and k is the

number of neurons in the hidden layer.

Let us formulate a developmental framework and test

criteria (that according to our experience) can be recommended

when developing and testing machine learning components of

HGCM, i.e. NN emulations of model physics components. The

developmental process consists of the three major steps:

1. Problem analysis or analysis of the model component (for

example, the original parameterization) to be approximated

to determine the optimal structure and configuration of NN

emulations.

2. Generation of representative data sets for training, vali-

dation, and testing. When creating a representative data set,
the original GCM is run long enough to produce all possible

atmospheric model simulated states, phenomena, etc.

3. NN training: Several different versions of NNs with

different architectures, initialization, and training algor-

ithms should be trained and validated.

Testing of the HGCM using the trained NN emulation

consists of two major steps. The first step is testing the

accuracy of the NN approximation against the original

parameterization using the independent test data set. Both the

original parameterization and its NN emulation are compli-

cated multidimensional objects (mappings). Many different

statistical metrics of approximation accuracy should be

calculated to assure that a sufficiently complete evaluation of

the approximation accuracy is obtained. For example, total,

level, and profile statistics have to be evaluated (see Section 3).

The second test step consists of a comprehensive analysis of

parallel HGCM and GCM runs. For the parallel model

simulations, all relevant model prognostic (i.e. time-dependent

model variables) and diagnostic fields should be analyzed and

carefully compared to assure that the integrity of the original

GCM and its parameterization, with all its details and

characteristic features, is precisely preserved when using a

HGCM with NN emulation (see Section 3). This test step

involving model simulations is crucially important. GCMs are

essentially nonlinear complex systems; in such systems, small

systematic and even random approximation errors can

accumulate over time and produce a significant impact on the

quality of the model results. Therefore, the development and

application framework of the new hybrid approach should be

focused on obtaining a high accuracy in both NN emulation

and HGCM simulations.
3. Examples of machine learning components and HGCMS

The NCAR CAM and NASA NSIPP (Natural Seasonal-to-

Interannual Predictability Program) GCM are used in this

study as examples of GCMs. The NCAR CAM is a spectral

model which has 42 spectral components (or approximately

3–3.58 horizontal resolution) and 26 vertical levels. The

NSIPP model is a grid point GCM which has 2!2.58

horizontal resolution (latitude!longitude) and 40 vertical

levels. Note that the model vertical levels are distributed

between the surface and upper stratosphere which is at

approximately 60–80 km. Development of NN emulations

was done for the two most time consuming components of

model physics, long wave radiation (LWR) and short wave

radiation (SWR). The NCAR and NSIPP models have

different LWR and SWR parameterizations. The complete

description of NCAR CAM atmospheric LWR is presented by

Collins (2001) and Collins, Hackney, and Edwards, (2002),

and of the NSIPP LWR by Chou, Suarez, Liang, and Yan

(2001). The full model radiation (or total LWR and SWR)

calculations take w70% of the total model physics

calculations.
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3.1. NCAR CAM long wave radiation

The function of the LWR parameterization in atmospheric

GCMs is to calculate heating fluxes and rates produced by

LWR processes. Here we give a very general and schematic

outline of this parameterization in order to illustrate the

complexity that makes it a computational ‘bottleneck’ in the

NCAR CAM physics.

The method for calculating LWR in the NCAR CAM is

based on LW radiative transfer equations in an absorptivity/

emissivity formulation (see Collins, 2001 and references

therein)

FYðpÞZBðptÞ3ðpt; pÞC

ðp
pt

aðp; p0ÞdBðp0Þ F[ðpÞ

ZBðpsÞK

ðps

p

aðp; p0ÞdBðp0Þ (3)

where F[(p) and FY(p) are the upward and the downward heat

fluxes; B(p)ZsT4(p) is the Stefan–Boltzmann relation;

pressures ps and pt refer to the top and surface atmospheric

pressures; and a and 3 are the atmospheric absorptivity and

emissivity. To solve the integral Eq. (3), the absorptivity and

emissivity have to be calculated by solving the following

integro-differential equations

aðp; p0ÞZ

ÐN
0

fdBnðp
0Þ=dTðp0Þgð1Ktnðp; p

0ÞÞdn

dBðpÞ=dTðpÞ
3ðpt; pÞ

Z

ÐN
0

BnðptÞð1Ktnðpt; pÞÞdn

BðptÞ
(4)

where the integration is over wave number n, and B(pt) is the

Planck function. To solve Eq. (4) for the absorptivity and

emissivity, additional calculations have to be performed and

the atmospheric transmission, tn has to be calculated. This

calculation involves a time consuming integration over the

entire spectral range of gas absorption.

The input vectors for the NCAR CAM LWR parameteriza-

tion include ten vertical profiles (atmospheric temperature,

humidity, ozone, CO2, N2O, CH4, two CFC mixing ratios (the

annual mean atmospheric mole fractions for halocarbons),

pressure, and cloudiness) and one relevant surface character-

istic (upward LWR flux at the surface). The CAM LWR

parameterization output vectors consist of the vertical profile of

heating rates (HRs) and several radiation fluxes, including the

outgoing LWR flux from the top layer of the model atmosphere

(the outgoing LWR or OLR).

The NN emulation of the NCAR CAM LWR parameteriza-

tion has the same number of inputs (a total of 220) and outputs

(a total of 33) as the original NCAR CAM LWR parameteriza-

tion. We have developed several NNs which all have one

hidden layer with 20, 90, 150, 200, 250, or 300 neurons.
Varying the number of hidden neurons allows us to

demonstrate the dependence that the accuracy of approxi-

mation has on this parameter as well as its convergence

(Krasnopolsky et al., 2005), and as a result provide an accuracy

of approximation sufficient for the climate model.

NCAR CAM was run for 2 years to generate representative

data sets. The first year of the model simulation was divided

into two independent parts, each containing input/output vector

combinations. The first part was used for training and the

second one for validation (control of overfitting, control of a

NN architecture, etc.). The second year of simulation was used

to create a test data set completely independent from both

training and validation sets. This data set was used for testing

only. All approximation statistics presented in this section are

calculated using this independent test data set.

Our NN emulations were tested against the original NCAR

CAM LWR parameterization. Mean difference B (a bias or a

systematic error of approximation) and the root mean square

difference RMSE (a root mean square error of approximation)

between the original parameterization and its NN emulation are

calculated as follows:

B Z
1

NL

XN

iZ1

XL

jZ1

½Yði; jÞKYNNði; jÞ�

RMSE Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
iZ1

PL
jZ1

½Yði; jÞKYNNði; jÞ�
2

NL

vuuut
(5)

where Y(i,j) and YNN(i,j) are outputs of the original

parameterization and its NN emulation correspondingly;

iZ(lat, lon), iZ1,., N is the horizontal location of a vertical

profile; N is the number of horizontal grid points; and jZ1,.,

L is the vertical index where L is the number of the vertical

levels.

All our NN emulations have almost zero or negligible

systematic errors (biases), which almost do not depend on

height and are indistinguishable from each other for the scale of

Fig. 1. The rest of Fig. 1 shows the vertical profiles of RMSE

(5) for the six developed NNs. For all NNs with the number of

hidden neurons starting at 90, RMSE (which is a purely random

error for the case of a zero bias) for the 10 upper levels does not

exceed 0.2 K/day and reaches just about 0.6–0.8 K/day at the

lowest level, which does not lead to significant errors in HGCM

simulations (see below).

Because NN20 is significantly less accurate and NN250 and

NN300 are not significantly more accurate than NN200, only

three NNs, NN90, NN150, and NN200 are included into

Table 1. Table 1 shows bulk test statistics for the approxi-

mation accuracy and computational performance for the three

best (in terms of accuracy and performance) developed NN

emulations. Mean values and standard deviations (sHR) of HRs

are presented in the title of Table 1 for a better understanding of

relative errors.

In addition to having a high approximation accuracy, our

NN emulations perform about 80–35 times faster (for NN90,

NN150, and NN200, correspondingly) than the original NCAR



Fig. 1. LWR NN emulation errors for NCAR CAM. Vertical profiles of mean

approximation errors at each of 26 model levels, the level biases (the left

vertical solid line) and level RMSEs (5), for six developed NNs (NN20—thin

solid, NN90—thick solid, NN150—dashed, and NN200—dotted, NN250—

dash-dotted, NN300—dash-double dotted lines), all in K/day.
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LWR parameterization. Table 1 and Fig. 1 clearly demonstrate

a systematic improvement in approximation accuracy when

increasing the size of the NN hidden layer as well as the

accuracy conversion. Both the original parameterization and its

NN emulation are complicated multidimensional objects

(mappings). In this case, calculating bulk statistics is not

sufficient for evaluating the approximation accuracy. We
Table 1

Statistics estimating the accuracy of HRs (in K/day) calculations and LWR

computational performance for NCAR CAM and NASA NSIPP model, both

using NN emulations (in these HGCMs) vs the original LWR parameterizations

(in GCMs) The total mean value for HRsZK1.36 K/day and the standard

deviation sHRZ1.93 K/day. The complexity column shows the total number of

weights in emulating NN

Model Bias (K/day) RMSE (K/day) Complexity Performance

NCAR

NN90

K4!10K4 0.33 22,893 w80 times

faster

NSIPP

NN90

7!10K4 0.58 22,001

NCAR

NN150

1!10K4 0.28 38,133 w50 times

faster

NSIPP

NN150

5!10K4 0.45 36,641

NCAR

NN200

5!10K5 0.26 50,833 w35 times

faster

NSIPP

NN200

3!10K4 0.38 48,841
evaluated many different statistical metrics of approximation

accuracy (Krasnopolsky et al., 2002, 2005).

The analysis of approximation errors presented above shows

that the NN technique is capable of providing NN emulations

with almost no systematic errors or biases and only small

random errors. Obviously, the final decision on choosing the

optimal version of the NN to be implemented into the model

should be made based on testing these NNs in HGCM

simulations (see Krasnopolsky et al., 2005). For assessing the

impact of using NN emulation of the LWR parameterization in

the HGCM, parallel climate simulation runs were performed

with the original GCM (NCAR CAM including the original

LWR parameterization) as the control run, and with the HGCM

(NCAR CAM including our NN emulations of LWR described

above). The climate simulations were run for 10 years (a period

long enough for testing the model performance) starting after a

2 year training and validation period, namely for years 3–12.

Comparisons between the control and NN emulation runs

presented in Table 2 are done by analyzing the time (10-year)

and global mean differences between the results of the parallel

runs, as is routinely done in climate modeling. In the climate

simulations performed with the original GCM and with

HGCM, the time and global mean mass or mean surface

pressure is precisely preserved, which is the most important

preservation property for climate simulations. For example, for

the NN150 run there is a negligible difference of 0.0001%

between the NN and control runs (see Table 2). Other time

global means, some of which are also presented in Table 2,

show a profound similarity between the simulations for these

terms, with differences usually within about 0.03%. These very

small differences indicate the almost identical or very close

results for the parallel climate simulations. Other simulations

(with NN90 and NN200) also show that the HGCM results are

profoundly similar to those of the original GCM (Krasnopolsky

et al., 2005).
3.2. NASA NSIPP long wave radiation

The robustness of our approach and the results obtained

were investigated using another GCM. The NASA NSIPP
Table 2

Time (10-year) and global means for mass (mean sea level pressure) and other

model diagnostics for the NCAR CAM-2 climate simulations with the original

LWR parameterization (in GCM), and its NN emulation (in HGCM) using

NN150 and their differences (in %)

Field GCM with the

original LWR

parameterization

HGCM with

NN emulation

Difference

(%)

Mean sea level

pressure (hPa)

1011.480 1011.481 0.0001

Surface temperature

(K)

289.003 289.001 0.0007

Total precipitation

(mm/day)

2.275 2.273 0.09

Total cloudiness

(fractions, %)

60.7 60.9 0.03

Wind at 12 km (m/s) 16.21 16.27 0.006
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GCM (with a different LWR parameterization and other model

components as compared to those of the NCAR CAM and its

LWR parameterization) was used for this purpose. The input

vector for the NSIPP LWR includes five vertical profiles (cloud

fraction, pressure, temperature, specific humidity, and ozone

mixing rate) and one surface temperature, for a total of 202

inputs. The NSIPP LWR output vector consists of a profile of

heating rates and one surface parameter, or a total of 41

outputs.

Approximation statistics for three NNs, namely NN90,

NN150, and NN200, are included into Table 1. Table 1, Figs. 1

and 2, produced for two different LWR parameterizations used

in two different GCMs, clearly demonstrate a systematic and

similar improvement of the NN approximation accuracy with

increasing size of the NN hidden layer. For more details about

NASA NSIPP LWR NN emulations, see Krasnopolsky,

Fox-Rabinovitz, and Chou (2005).

3.3. NCAR CAM short wave radiation

The second component of atmospheric radiation is the short

wave radiation (SWR). LWR and SWR together comprise full

radiation. The function of the SWR parameterization in

atmospheric GCMs is to calculate heating fluxes and rates

produced by SWR processes. The description of the NCAR

CAM atmospheric SWR parameterization is presented in a

special issue of Journal of Climate (1998). The input vectors

for the NCAR CAM SWR parameterization include twenty one

vertical profiles (specific humidity, ozone concentration,

pressure, cloudiness, aerosol mass mixing ratios, etc.) and
Fig. 2. LWR NN emulation errors for NASA NSIPP GCM. The vertical profiles

of mean approximation errors at each of 40 model levels, for level biases (the

left vertical line) and level RMSEs (5), for three developed NNs (NN90—thin

solid, NN150—dashed, and NN200—dotted), all in K/day.
several relevant surface characteristics. We developed NN

emulations for CAM-2 and CAM-3 versions of NCAR CAM

SWR parameterizations. The major difference between the

CAM-2 and CAM-3 SWR versions is that CAM-3 uses

significantly more information about aerosols. This extended

aerosol information is responsible for the substantial increase

in the number of inputs into the CAM-3 SWR parameterization

as compared with CAM-2. The CAM SWR parameterization

output vectors consist of a vertical profile of heating rates

(HRs) and several radiation fluxes.

The NN emulations of NCAR CAM-2 and CAM-3 SWR

parameterizations have 173 and 451 inputs, correspondingly,

and 33 outputs, which are the same as for the original NCAR

CAM-2 and CAM-3 SWR parameterizations. We have

developed several NNs, all of which have one hidden layer

with 50, 100, 150, or 200 neurons (kZ50, 100, 150, and 200 in

Eq. (2)).

The data sets for training, validating, and testing NNs

emulating SWR were generated in the same way as those for

the LWR NN emulations described above. Our SWR NN

emulations were tested against the original NCAR CAM-2 and

CAM-3 SWR parameterizations. Table 3 shows bulk test

statistics for the accuracy of approximation and computational

performance for the three best (in terms of accuracy and

performance) SWR NN emulations. Mean values and standard

deviations (sHR) of HRs are presented in the title of Table 3 for

a better understanding of relative errors.

The vertical distributions of approximation errors for CAM-

2 SWR NNs presented in Table 3 are shown in Fig. 3. The table

and figure demonstrate that SWR and LWR NN emulations are

similar in terms of their approximation accuracy. Parallel runs

of NCAR CAM support this conclusion and show results

similar to those presented in the previous section for parallel

runs with the LWR NN emulation. Comparisons of the parallel

runs are summarized in Table 4. See the discussion of Table 2

for comparison.

Let us now give an example of a key simulated prognostic

field, temperature, and the differences (produced in the 10-year

parallel runs) between the control GCM simulation and the
Table 3

Statistics estimating the accuracy of HR (in K/day) calculations and

computational performance for NCAR CAM-2 and CAM-3 SWR using NN

emulation (in these HGCM). using NN100, NN150, and NN200 vs. the original

parameterization (in this GCM). For SWR, the mean value for HRsZ
1.47 K/day and sHRZ1.98 K/day. The complexity column shows the total

number of weights in emulating NN

NN Parameterization Bias RMSE Complexity Performance

NN100 SWR CAM-2 3!10K3 0.17 20,733

SWR CAM-3 3!10K3 0.18 48,533

NN150 SWR CAM-2 3!10K4 0.15 31,083 w 8a times

faster

SWR CAM-3 4!10K4 0.18 72,783

NN200 SWR CAM-2 1!10K3 0.14 41,433

SWR CAM-3 2!10K4 0.15 97,033

a The main reason for the smaller performance gain for SWR vs. LWR (see

Table 2) when using NN emulation in the case of the SWR parameterization is that

the original SWR CAM-2 parameterization is simpler and about 10 times faster

than the original LWR CAM-2 parameterization.



Fig. 3. SWR NN emulation errors for NCAR CAM. Vertical profiles of level

RMSEs at each of 26 model levels for SWR NN emulations for three developed

NNs (NN100—solid, NN150—dashed, and NN200—dotted line) in K/day.
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HGCM simulation with SWR NN150 emulation. The time (10-

year) mean vertical distributions of latitudinal means for

temperature (T) are presented in Fig. 4. The upper left panel of

Fig. 4 shows the HGCM simulation (with SWR NN150), the

upper right panel the control simulation (with the original SWR

parameterization), and the bottom panel shows their difference

or bias. Therefore, bias is calculated against the control run. The

temperature distributions for the control and NN emulation runs

(see upper panels) are practically indistinguishable from each

other. Such a profound pattern similarity is further confirmed

and quantified by a very small, practically negligible bias shown
Table 4

Time (10-year) and global means for model diagnostics from NCAR CAM-2

climate simulations with the original SWR (in GCM), its NN emulation

(in HGCM) using NN150, and their differences in %

Field GCM with the

original SWR

parameterization

HGCM with

SWR NN

emulation

Difference (%)

Mean sea level

pressure (hPa)

1011.481 1011.483 0.0002

Surface temperature

(K)

289.005 288.973 0.003

Total precipitation

(mm/day)

2.86 2.87 0.0009

Total cloudiness

(fractions, %)

60.73 60.81 0.008

Wind at 12 km (m/s) 16.21 16.18 0.003
in the bottom panel. Temperature bias for the NN90 run is

mostly limited in magnitude to 0.1–0.2 K. It increases to a

maximum of 0.8 K for the southern polar domain above the

200 hPa level. Just as a reference, the temperature observation

errors are about 2–3 K. Therefore, bias for the HGCM run (with

SWR NN150) is just a small faction of the observation error.

A detailed comparison of diagnostic and prognostic fields

for the parallel runs of GCM (the control run) and HGCM

(using NN emulation for the LWR parameterization) is

presented in Krasnopolsky at al. (2005). They show that the

parallel run fields are as close to each other as those shown in

Fig. 4. Therefore, both components of radiation, LWR and

SWR, can be successfully emulated using the NN approach. It

means that these most time consuming components of model

physics can be significantly sped up without any negative

impact on the accuracy of climate simulations.

4. Specific NN aspects of the HGCM application

Here, we consider the specific aspects of the NN approach

relevant to our application. The very large size and other

specific features of our model component emulating NNs have

determined the selection of the NN type, MLP (see the

discussion in Section 2), and many other specific NN features

used in our application. Some of these features are briefly

discussed below.

4.1. Architecture of NN emulations: a single

NN vs multiple NNs

In our approach described in Section 2, we treat an entire

parameterization as an elementary/single object and emulate its

functionality (input–output relationship) as a whole. Practical

implementation of this approach allows for multiple solutions

in terms of the number of NNs used for emulation. The MLP

NN presented by Eq. (2) can be implemented as a single NN

with m outputs, m NNs with one output each, or several NNs

with the total number of outputs equal to m.

A single emulating NN per parameterization solution is

convenient because of the simplicity of its design. It also has a

great advantage in terms of speeding up the calculations when,

as in our application, the outputs of the parameterization and,

therefore, the outputs of the emulating NN are highly

correlated. In the case of a single NN (2) with many outputs,

all outputs are built from the same hidden neurons; they are

different linear combinations of the same neurons. Fewer

neurons are required to approximate a particular number of

correlated outputs than to approximate the same number of

uncorrelated ones. Thus, in the case of correlated outputs, one

NN per emulation solution provides a significantly higher

performance at the same approximation accuracy than a battery

of m NNs, each with one output.

On the other hand, a single emulating NN per parameteriza-

tion solution is more complicated in terms of NN training. It

leads to a higher dimensionality of the training space. For

example, for CAM-3 SWR NN, the dimensionality of the

training space (the total number of NN weights) exceeds



Fig. 4. NCAR CAM time (10-year) and latitudinal mean vertical distributions of temperature (in K) for HGCM with SWR NN150, control (GCM with the original

SWR) runs (the upper left and right panels, respectively), and their difference (the bottom panel). The contour intervals are 10 and 0.2 K for the upper and bottom

panels, respectively.
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100,000 if the number of hidden neurons exceeds 200. Training

such a complex NN is very slow and reaching a good local

minimum is not guaranteed. As a result, the improvement in

approximation accuracy with an increase of the number of

hidden neurons may be slow and not monotonic (see

Krasnopolsky et al., 2005; Fig. 1).

A battery of m single-output NNs is slower than a single NN

emulation with m outputs; however, because each of m NNs is

simpler than a single NN emulation with m outputs, training

these multiple NNs may be a simpler and faster procedure than

that for a single NN emulation with m outputs. Higher

approximation accuracy may be obtained more easily with

multiple NNs if performance can be traded off. Fig. 5 shows a

comparison of absolute and relative approximation errors for

three single LWR emulating NNs (2), each with 150 neurons in

one hidden layer and 33 outputs (solid, dashed, and dotted

lines), with a battery of 33 NNs with a single output each (dash-

dotted line). The difference between the three single NNs is

due to the different normalization of outputs (see Section 4.2).
The accuracy of the battery of 33 NNs is significantly higher

than that of the single NN; however, the total number of hidden

neurons in the NN battery is about 950. As a result, the NN

battery performs about six times slower than a single NN with

150 hidden neurons and only about eight times faster than the

original LWR parameterization. The training space for a single

NN with 950 hidden neurons would have a dimensionality of

about 250,000 (only about 38,000 for a NN with 150 neurons).

A battery of 33 NNs with an approximation accuracy close to

that of a single NN with 150 neurons (e.g. Fig. 5, solid line) has

a total of about 400 hidden neurons; therefore, the correlation

of outputs in the case of the LWR parameterization allows us to

obtain a performance gain of about 2.5–3 times (for the same

approximation accuracy) when using a single NN with multiple

outputs.

The possible choices among many topological solutions,

from a single NN with m outputs to m single-output NNs

demonstrate an important flexibility in the NN emulation

technique that offers a speed vs accuracy trade-off. This



Fig. 5. LWR NN emulation errors for NCAR CAM. Vertical profiles of RMSEs (5) of LWR HRs at each of 26 model vertical levels for different architectures of

LWR NN emulation and for different types of output normalizations. The left panel shows relative RMSEs in units of the standard deviations of LWR HRs calculated

at the same vertical level. The right panel shows the absolute RMSEs in K/day. Dash-dotted lines show RMSEs for a battery of 33 single-output NNs. Solid, dashed,

and dotted lines show RMSEs for three single NNs with 33 outputs and with 150 hidden neurons each. Dotted lines correspond to the [K1,1] outputs normalization,

dashed and solid curves correspond to the normalizations (7) and (8), respectively.
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additional flexibility can be effectively used for various

applications.

4.2. Normalization of NN outputs

For a NN (2) with a single linear output, normalization of

the output is not a complicated problem. Any traditional

normalization, like normalizing to the interval [–1,1] or using

the following normalization

y0 Z
yK �y

s
(6)

where �y is the mean value of y and s is its standard deviation,

leads to similar approximation errors.

For a single NN with multiple outputs, the normalization of

outputs affects the approximation accuracy more significantly.

Fig. 5 illustrates the dependence of approximation errors, at the

different vertical model levels, on the type of the output

normalization. The right panel shows the absolute approxi-

mation RMSEs for LWR heating rates in K/day; the left panel

shows the relative approximation RMSEs normalized at each

vertical level using the standard deviation (sq) of the heating

rate at this level, q. The dotted curve corresponds to the [K1,1]

output normalization. It is clear that this normalization

deemphasizes the contribution of the vertical levels with

small (levels 13–18) and large (levels 0–3) sq, in the error

function leading to larger and vertically nonuniform absolute

and relative errors. The normalization similar to (6) for the case

of multiple outputs can be written as

yq Za
yqK �yq

sq

(7)
where a%1 is introduced to accelerate the training of linear

weights in the output layer of NN (2). In the case of multiple

outputs, this normalization leads to very different approximation

errors (dashed curves) as compared with the [K1,1] normal-

ization. The normalization (7) leads to a more uniform vertical

distribution of relative errors (left panel) and significantly

reduces relative and absolute errors at vertical levels with small

sq (levels 13–18); however, it significantly increases the errors at

vertical levels with large sq (levels 0–3). A similar distribution

of errors is produced by the battery of 33 single-output NNs that

uses normalization (6). In this case, the smaller errors are due to

the significantly larger total number of hidden neurons.

A compromise between the [K1,1] normalization and the

normalization (7) can be reached using the following normal-

ization,

y0q Za
yqK �yq

s
(8)

where s is the standard deviation for all outputs (heating rates

at all vertical levels). The errors for this normalization are also

shown in Fig. 5 (solid curves). For different applications of the

NN emulations, different types of error distribution may be

desirable; smaller absolute or relative errors may be preferable.

Different output normalizations in the case of a single

emulating NN with multiple outputs may provide a tool for

managing this kind of requirement.
4.3. Training algorithm

In HGCM applications, the dimensionality of the training

space reaches 105–106. It is our experience that in this case
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the most reliable and stable (but slow) algorithm for NN

training is back-propagation with adjustable learning rates and

reasonable criteria for automatic stopping. We use back-

propagation for training both linear and nonlinear weights in

NN (2). NN weights are adjusted after each training record;

however, criteria for a learning rate adjustment and automatic

stopping are calculated and checked after each training epoch.

Criteria used for changing learning rates include the

magnitudes of: (1) a relative error, (2) an increment of an

relative error, and (3) relative changes in NN weights.

Predefined values of the same characteristics serve as

automatic stopping criteria; in addition, the training stops if

an error does not improve after a predefined number of training

epochs.

4.4. Initialization of NN weights

It is well known that initialization of weights during the

nonlinear optimization (the MLP training) can affect the

resulting solution for NN weights (and hence generalization).

A nonlinear error or lost function has multiple local minima.

The back-propagation algorithm, as almost any algorithm

available for solving a nonlinear optimization problem (NN

training), converges to a local minimum. Usually, multiple

initializations (even multiple initialization procedures) (e.g.

Nguyen & Widrow, 1990; Wessels & Bernard, 1992) are

applied allowing to avoid shallow local minima and to choose a

local minimum with a sufficiently small error. In our

applications, multi-collinearities (inter-correlations) in the

input data and their high dimensionality partly alleviate the

problem of seeking for a local minimum with a small error

among multiple local minima. Multi-collinearities in the input

data lead to equalization of local minima especially in the case

of higher input dimensionality. From the point of view of the

approximation problem, all these local minima give almost

equally good solutions because the approximation errors for

these minima are almost equally small. However, for our

applications, we expect our NN emulations to provide a smooth

interpolation in addition to good approximation. Thus, we

apply different initializations that lead to different local

minima, different solutions for the NN weights, and different

interpolations. Then we test the quality of the interpolation

using the test set and running different NN emulations in

HGCM in parallel with the original GCM.

4.5. Generation of representative data sets for training

NN emulations in HGCMs are expected to be used to

produce climate simulations, weather forecasts, etc. for periods

from several days (for weather prediction) to several decades or

hundreds of years (for climate simulations and predictions).

During such long periods of integration, NN emulations can be

applied up to about 1012 times and many new atmospheric

states, that were not present in the dataset used during the

training process, may occur in the simulations. This means that,

during this long period of integration, NN emulation is used for

massive interpolation and even for limited extrapolation. NN
emulation is supposed to do this interpolation or limited

extrapolation with high accuracy (taking into account our main

requirement of providing a close similarity of the results

generated by the HGCM to those of the original GCM). NN

(MLP) is a very good tool for approximation; it is good enough

for a limited generalization, including moderate interpolation

and limited extrapolation. NN is not a very powerful tool for

extended generalization, including far extrapolation and filling

large gaps in the input space. These difficulties make the

creation of a representative data set for NN training a non-

trivial problem. However, in our case, many difficulties in this

task are alleviated by using easily available simulated data for

training. Moreover, because our training set consists of

input/output profiles distributed more or less uniformly all

over the globe, with all seasonal variations included, our data

set is designed to be representative in terms of a complete set of

physical states presented in data. It even includes some

redundant data that makes it suitable for training a NN with

good interpolation properties. In our applications, using data

simulated during a 1 year GCM run for NN training allows us

to produce a follow-up HGCM integration with this NN

emulation for at least 20–40 years without losing simulation

accuracy and integration stability. The accuracy of the HGCM

simulation is high practically everywhere with only the

potential of small error increases in some limited areas. If a

training set is enriched by data from the second year of

simulation, both the simulation accuracy in these areas and the

error uniformity improve significantly. We experimented with

the simulation length needed for creating a representative data

set and concluded that a 2-year simulation is enough, especially

for satisfying the specific conditions in these areas.
5. Discussions and future plans

Let us discuss some selected topics relevant to our

applications that are still in the process of development and

investigation.
5.1. Dynamical adjustment and quality control

The NN emulation approach described in this paper depends

significantly on our ability to generate a representative training

set that avoids using NN for extrapolation far beyond the

domain covered by the training set and for interpolation into

large gaps inside the domain. Taking into account that the input

domain dimensionality is of the order of several hundred or

more, it is rather difficult to cover the entire domain, especially

its ‘far corners’ associated with rear events, even when we use

the simulated data for NN training. Another related problem

arises because NN emulates the part of a climate change

simulated by GCM. It means that, in the process of running a

climate simulation, the domain configuration may change as

compared to its configuration when the training set was

generated (e.g. climate change scenario). In both described

situations the emulating NN may be forced to extrapolate

beyond its generalization ability, which may lead to errors
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in emulating NN outputs that may affect the corresponding

HGCM simulations.

To take care of these kinds of problems and make our NN

emulation approach suitable for long-term climate change

simulations and for operational use in weather prediction, we

are developing two new techniques: a compound parameter-

ization (CP) and an NN dynamical adjustment (DA). Here, we

will just briefly outline them.

The compound parameterization consists of three elements:

the original parameterization, its NN emulation, and a quality

control block (QCB). During a routine HGCM simulation with

CP or HGCM/CP, the NN emulation is used by default and

generates physical parameters (outputs) that are checked by

QCB. If QCB accepts the parameters they are used in the

HGCM. If QCB rejects the parameters generated by the NN

emulation, the original parameterization is used instead for

generating physical parameters to be used by the HGCM. At

the same time, inputs and outputs of the original parameteriza-

tion used as substitutions for the QCB-rejected parameters are

saved for a follow-up adjustment of the NN emulation. After

accumulating a sufficient number of records, a dynamical

adjustment of the NN emulation is produced using a short

retraining using the accumulated input/output records. Thus,

the adopted NN emulation is dynamically adjusted to the

changes and/or new events produced by the complex

environmental model.

There are several possible designs to consider for the QCB.

The first and simplest QCB design is based on a set of regular

physical and statistical tests for the spatial, temporal, and

internal consistency of the NN outputs. The second design is

based on training additional NNs specifically for estimating the

errors in the NN emulation outputs. If these errors exceed a

predefined threshold, the original parameterization is used

instead of NN emulation. The third and probably most

promising design is based on the domain check technique

proposed in the context of NN applications in satellite remote

sensing (Krasnopolsky & Schiller, 2003). In this case, the QCB

is a combination of forward and inverse NNs. We have already

applied this approach as a preliminary study in the ocean wave

model (Tolman & Krasnopolsky, 2004).

5.2. Calculating NN Jacobian

The parameterization Jacobian, a matrix of first derivatives

of parameterization outputs over inputs, may be useful in many

cases. For example, in data assimilation applications (an

optimal blending of observational and simulated data to

produce the best possible blended data) a Jacobian is used to

create an adjoint (the tangent–linear approximation). A

Jacobian is also instrumental for a statistical analysis of the

original parameterization and its NN emulation (sensitivity,

robustness, and error propagation analyses). An inexpensive

computation of the Jacobian when using NN emulation is one

of the advantages of the NN approach. Using this Jacobian in

combination with the tangent–linear approximation can

additionally accelerate calculations (Krasnopolsky et al.,

2002). However, since the Jacobian is not trained it is simply
calculated through direct differentiation of an emulating NN.

Generally speaking, in this case the statistical inference of a

Jacobian is an ill-posed problem and it is not guaranteed that

the derivatives will be sufficiently accurate.

As was mentioned above, after training using a redundant

training set, our NN emulations demonstrated very good

interpolation properties during long-term decadal integrations

of the HGCM. This implies that, on average, the derivatives of

these emulations are sufficiently accurate to provide a

satisfactory interpolation. However, for large NNs (Chevalier

& Mahfouf, 2001), such an accuracy of an instantaneous NN

Jacobian may not be sufficient for using the Jacobian in the

tangent–linear approximation. For this type of an application,

our NN emulation approach that treats a parameterization as a

single object offers a simple and straightforward solution that

alleviates the need for calculating the NN Jacobian explicitly.

The adjoint tangent–linear approximation of a parameteriza-

tion (e.g. of a radiation parameterization) may be considered as

an independent/new parameterization and our NN emulation

approach can be applied to such new parameterization.

For other applications that require an explicit calculation of

the NN Jacobian, several solutions have been offered and

investigated: (1) the mean Jacobian can be calculated and used

(Chevalier & Mahfonf 2001); (2) the Jacobian can be included

in the training data set and as actual additional outputs from the

NN; (3) the Jacobian can be trained as a separate additional NN

(Krasnopolsky et al., 2002) (generation of a data set for training

a Jacobian or an adjoint NN is not a significant problem in our

case because simulated data are used); (4) regularization

techniques like ‘weight smoothing’ (Aires, Schmitt, Chedin, &

Scott, 1999) or the technique based on a principle component

decomposition (Aries, Prigent, & Rossow, 2004) can be used to

stabilize the Jacobians; (5) the error (or cost) function, which is

minimized in the process of NN training, can be modified to

accommodate the Jacobian (Lee & Oh, 1997). In other words,

the Euclidian norm, which is usually used for calculating the

error function, should be changed to the first order Sobolev

norm. With such a change, the NN is trained to approximate

not only the parameterization (as with the Euclidian norm) but

also the parameterization’s first derivatives. This solution does

not change the number of the NN outputs; however, it may

require using more hidden neurons and may significantly

complicate the minimization during the training since the

complexity of the error function increases. This solution also

requires the availability of an extended training set that

includes first derivatives. Finally, it should be mentioned that

the Jacobian modeling for large NNs still remains an open

issue.

5.3. Investigation of alternative machine learning techniques

In this paper, only one MLT, the NN technique, has been

discussed and investigated. We started from NNs because this

technique is well established and developed. However, it is not

optimal; there are new techniques like support vector machines

(SVM) and related approaches which may provide an optimal

approximation for obtaining MLT components with even better
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accuracy and performance. We plan on investigating other

MLTs in the future.

6. Conclusions

In the study, we introduced a new practical application of

NN techniques to complex environmental numerical modeling.

Using NNs allowed us to design and formulate a new paradigm

in environmental numerical modeling. We introduced a new

type of a complex hybrid environmental numerical model—a

HGCM—based on a synergetic combination of deterministic

modeling and the machine learning techniques within such a

model. This approach uses neural networks as a statistical or

machine learning technique to develop highly accurate and fast

emulations for the slowest deterministic model components

(model physics parameterizations). Then these NN emulations

are combined with the remaining deterministic components of

the original GCM to constitute a HGCM, which produces

simulations that are very close to those of the original GCM but

significantly faster. The synergy of this approach leads to new

opportunities in environmental modeling due to the use of

HGCMs: (1) more frequent calculations of the model physics

that improves the temporal consistency of the model physics

and the model dynamics calculations; (2) a possibility of using

new more sophisticated physical parameterizations that are

currently computationally prohibited; (3) introducing models

with higher resolutions; and (4) producing ensemble climate

simulations and weather predictions for reduction of their

uncertainties.

In some cases, the original deterministic component

(parameterization) in a GCM is so complex that it is not

practical to emulate it as a single mapping. In those cases, the

idea of combining deterministic and NN components can be

applied not to the entire GCM but to a single component

(parameterization) of the model in order to develop a hybrid

parameterization. Such an approach has already been success-

fully applied by Chevalier et al. (1998, 2000) and has been used

since the fall of 2002 in the operational data assimilation system

at the European Centre for Medium-range Weather Forecasts.

As we mentioned above, computations of physical

processes are not the only computational ‘bottlenecks’ in

GCMs. Including chemical, biological, hydrological and other

processes into GCMs provides similar (sometimes even

greater) computational challenges. The new paradigm of a

hybrid model, combining deterministic and machine learning

or statistical components, can provide fast and accurate

calculations of these processes as well. The developed hybrid

modeling paradigm and related NN emulation approach we

developed are applicable, in our view, to other similar complex

numerical models used outside the field of environmental

modeling applications such as complex models in compu-

tational physics, chemistry, biology, etc.
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